Skip to main content

Kerala PSC Notification| recruitment for the post of Assistant Professor

   Extra  Ordinary Gazette  Date    :       11.12.2019                                           Last Date                  :       15.01.2020           Category No.  283/2019 – 304/2019 1. Applications  are  invited  online  only  through  ONE  TIME  REGISTRATION    from  qualified candidates   for appointment  in  the  under  mentioned posts  in Kerala   Government  Service. Department : 2. Name  of Post : Kerala  Collegiate  Education Assistant  Professor (in the  following various  subjects) 1. History    -  Category No. 283/2019 2. Urdu  -    Category  No.  284/2019 3. Hindi   -   Category  No.  285/2019 4. Tamil   -  Category No.  286/2019 5. English -  Category  No. 287/2019 6. Arabic  -  Category  No.  288/2019 7. Malayalam             - 8. Kannada                 - Category  No. 289/2019 Category  No. 290/2019       9. Travel  &  Tourism  -  Category  No. 291/2019 10. Islamic  History    -  Category No.  292/2019 11. Chemistry            -  Category No.  293/2019 12. Geography           -  Category No.  294/2019 13. Zoology                - 14. Mathematics         - Category  No.  295/2019 Category  No.  296/2019 15. Political  Science   -  Category No.  297/2019 16. Commerce    -  Category  No.  298/2019 17. Psychology  -  Category No.  299/2019 18. Sociology     -  Category  No.   300/2019 19. Music           - Category No.   301/2019 20. Philosophy  -  Category No.   302/2019 21. Physics          - Category  No. 303/2019  22. Home  Science  (Food &  Nutrition)-Category  No.304/2019 3. 4. Scale  of pay Number  of vacancy : : UGC Scale History – 1 (One) Subjects  other than History –  Anticipated vacancies The  above  vacancy  is  now  in  existence.    The  Ranked  list  published  by  the  Commission  in  response to  this  notification  shall  remain  in  force  for  a  minimum  period  of  one  year  provided  that  the  said  list will  continue  to  be  in  force  till  the  publication  of  a  new  list  after  the  expiry  of  the  minimum  period  of one  year  or  till  the  expiry  of  three  years  whichever  is  earlier.    Candidates  will  be  advised  from  the  said list  against  the  vacancies  reported to  the  Commission in writing during the  period  of currency of the  list Note  :  3%  of  the  vacancies  for  the  post  shall  be  reserved  for   Differently  Abled  candidates  with Locomotor  Disability  /  Cerebral  Palsy,  Low  Vision,  Blindness  and  Hearing  impairment  as  per  G.O  (P) No.61/12/SWD  Dated  17/10/2012.

Comments

Popular posts from this blog

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

RADIOMETRIC CORRECTION

  Radiometric correction is the process of removing sensor and environmental errors from satellite images so that the measured brightness values (Digital Numbers or DNs) truly represent the Earth's surface reflectance or radiance. In other words, it corrects for sensor defects, illumination differences, and atmospheric effects. 1. Detector Response Calibration Satellite sensors use multiple detectors to scan the Earth's surface. Sometimes, each detector responds slightly differently, causing distortions in the image. Calibration adjusts all detectors to respond uniformly. This includes: (a) De-Striping Problem: Sometimes images show light and dark vertical or horizontal stripes (banding). Caused by one or more detectors drifting away from their normal calibration — they record higher or lower values than others. Common in early Landsat MSS data. Effect: Every few lines (e.g., every 6th line) appear consistently brighter or darker. Soluti...

Atmospheric Correction

It is the process of removing the influence of the atmosphere from remotely sensed images so that the data accurately represent the true reflectance of Earth's surface . When a satellite sensor captures an image, the radiation reaching the sensor is affected by gases, water vapor, aerosols, and dust in the atmosphere. These factors scatter and absorb light, changing the brightness and color of the features seen in the image. Although these atmospheric effects are part of the recorded signal, they can distort surface reflectance values , especially when images are compared across different dates or sensors . Therefore, corrections are necessary to make data consistent and physically meaningful. 🔹 Why Do We Need Atmospheric Correction? To retrieve true surface reflectance – It separates the surface signal from atmospheric influence. To ensure comparability – Enables comparing images from different times, seasons, or sensors. To improve visual quality – Remo...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...